
Exact solutions for a mean-field Abelian sandpile

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 L973

(http://iopscience.iop.org/0305-4470/26/19/001)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 19:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A Math. Gen. 26 (1593) L973-L980. Printed in the UK 

LETTER TO THE EDITOR 

Exact solutions for a mean-field Abelian sandpile 

S A Janowskyt§ and Claude A Laberget 
?Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA 
$Department of Physics, Rutgers University, Piscataway, NJO8855-0849, USA ., 

Received8 June 1993 ~ , 

Abstract. Weinhoduceamodelforasandpile,withNsites,criticalheightNandeachsite 
connected to every other site. It is thus a mean-field model in the spin-glass sense. We 6nd 
an exact solution for the steady-state probability disuihution of avalanche sizes, and 
discuss its asymptotics for large N. 

The publication of a series of articles by P Bak and collaborators [I, 21 generated a 
growing interest in the study of a certain class of cellular automata models now 
commonly known as ‘sandpiles’ because of a crude analogy between the dynamical 
rules and the way sand topples when building a sandpile. The basic motive was not to 
model the way real sandpiles behave, although it did broaden the audience for 
granular flow [3-51, but to study a phenomenon they coined ‘self-organized criticality’ 
in which a system reaches a critical state,’i.e. a state with no intrinsic length or time 
scales, without the tuning of an external parameter. This generated a big influx of 
theoretical, computational and even experimental studies of self-organized criticality 
and of Kindpiles in general. Unfortunately, even though the number of nodels (i.e. 
sets of dynamical rules) exhibiting self-organized criticality or falling into the more 
general category of sandpiles has increased dramatically, very few exact results are 
known at present [6-101). In this letter we present a model in which many quantities 
can be calculated exactly in a rigorous way. 

A sandpile model is basically a set of dynamical rules describing the way that 
grains of sand are added to a system, the conditions under which those mains can be 
redistributed inside the system, and the way they are removed from the system. Here 
we consider a system of N sites and define h(i) as the (integer) height of the column of 
sand at site i, i ~ { l .  . . N). We drop a grain of,sand on a site i chosen at random, 
thereby increasing its height by one: h(i)+h(i) +l. If this new height exceeds the 
maximum stable value h, then that column topples and gives 1 grain of sand to each of 
the N- 1 other sites while one grain drops out of the system. (We take h,>N so that 
h(i) 3 0: in fact we are primarily interested in h, = N.)  We then examine the system to 
see if any site has a column exceeding h, in which case we topple that column also. We 
keep toppling until all the sites are stable (this characterizes an avalanche). We then 
repeat the procedure of adding a grain at a randomly chosen site. 

This model falls into the category of Abelian sandpiles since we always obtain the 
same stable configuration from an unstable one irrespective of the order in which we 
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executed the topplings. Dhar [ll] used this fact to obtain several properties of those 
models which we use extensively in our analysis. Furthermore, since all sites are 
connected to all other sites, we can say that we have a mean field theory of Abelian 
sandpiles It is this combination that permits the model to be solved. It should be 
pointed out that our model is quite different from previous attempts to study mean- 
field sandpiles [12,13]. 

It is shown in [ll] that not all configurations are allowed in the asymptotic regime, 
but that the allowed (recurrent) configurations all have equal weight. In general, the 
number of recurrent configuration is given by the determinant of the toppling matrix 
A whichisanNxNmatrixwhereAjj=h,andAjj=-1foreachsitejconnectedtoi,so 
that row i of A represents the amount of sand lost by every site when site i topples. 
Thus in the model considered here this matrix takes the form 

A, -1 + (h,+ 1)bg (1) 
where 6, is the Kronecker delta. 

Because of the highly symmetric nature of A in our model it is straightforward to 
calculate the determinant and determine that the number of recurrent configurations 
is 

Z(N,h , )=de tA=(h ,+ l -N) (h ,+ l )N- ' .  (2) 
For the case h,=N we have Z(N, N ) =  (N+ l)N-'. Incidentally this is the number of 
spanning trees on a fully connected graph with N+ 1 sites. Such a result was expected 
from the general observation that det A is precisely the cofactor of the matrix tree [14] 
for graphs defined on a superset of the sandpile lattice (there is an additional site, the 
ground, connected to every site). In fact there is a one-to-one correspondence 
between the recurrent configurations and the spanning trees, in the sense that a 
configuration is recurrent if and only if it passes the 'burning algorithm' test described 
in [6 ,8] .  Actually this holds only for symmetric Abelian sandpiles, i.e. models where 
A is symmetric; for the asymmetric case see [E]. 

Clearly the recurrent configurations fall into equivalent classes, where two con- 
figurations are equivalent if one is a permutation of the other. Because of, the 
symmetry of the model we need only examine one member of each equivalence class; 
we find it convenient to restrict ourselves to the case h( i )Sh( i+  l), i= 1, . . . , N -  1, 
where the amount of sand increases as the site label increases. 

Our analysis will focus on a particular subset of the recurrent configurations, 
namely the minimal configuration?.. A given configuration is minimal if there is no 
recurrent configuration that can  be obtained by removing sand from the given 
configuration. Some brief computations show (one can use the so-called 'burning 
algorithm' of [6])  that the configuration h(i) = i is a minimal configuration. All 
minimal configurations fall into this equivalence class and thus are exactly N !  minimal 
configurations, the permutations of h(i)  = i. If we now consider equivalence classes for 
general configurations, we see that the restriction that a recurrent configuration be 
greater than or equal to the minimal configuration yields 

h(i)>i h( i )  3 h ( i -  1) (3) 
(set h(0) = 0). 

Now consider how avalanches of various sues come about in our model; we limit 
the discussion to the case h,= N .  Size here means either the number of grains that fall 
out of the system or the number of sites that topple; in the model considered here 
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there is no ambiguity because they are equal. An avalanche begins when a grain of 
sand is dropped on a site of height N .  It will continue if the second-highest site is also 
at height N .  It will be at least of sue three if the third-highest site is at height N -  1, 
and it will be at least of size four if the fourth-highest site is at height N - 2 ,  etc. 
Therefore the size will be (using the equivalence class notation) 

Naval= N-min{ j : h ( i )  > i  for all j S  i<  N } .  (4) 

This is the only non-zero size avalanche this configuration can produce, and it is 
determined simply by 'how long' the configuration stays away from a minimal one. 

If we have such configuration, what is the probability of starting an avalanche? It is 
simply the fraction of sites at the maximum value l { i :h( i )=N}l /N.  Therefore, to 
determine the avalanche size probability distribution, we merely have to count the 
configurations with fixed Nay,[ and with a fixed number of sites at height N .  Luckily, 
the number of such configurations can be simply represented as partition functions for 
smaller systems with different critical heights-we obtain (for 1 < k S N ) :  

P(ava1anche of size k )  

' = Z ( N ,  N)-'Z(N-'k,  N y  k )  2 ' ( , ) L Z ( k - j , k - Z ) .  (5 )  
i=2 1 , k - j , N - k  N 

A brief explanation of the source of the terms in (5)  is in order. First of all, since 
site N -  k must be at height N - k  to get an avalanche of the right size, the remaining 
sites below N -  k yield a factor Z ( N -  k ,  N -  k) .  Next j is the number of sites at height 
N .  The sites between N -  k + 1 and N - j must be greater than minimal yet less than N; 
this is equivalent to Z ( k - j ,  k - 2 ) .  The combinatoric factor gives us the number of 
ways we can choose configurations with fixed equivalence classes for the subsystems. 
Finally we have the probability of toppling j / N  and the normalization Z(N,  N ) .  

Simpler expressions hold for k = 0, l :  

P(ava1anche ofsize l ) = Z ( N -  1, N -  l ) lZ (N,  N )  (6) 

P(no avalanche) = Z(N - j ,  N -  l ) / Z ( N ,  N ) .  N 
j=1 

The above sums ((5)-(7)) can be performed exactly. The result is 

( N -  k + 1)N-*-ikk--2 ( N -  l)! 
( N  + l)N-'(k - 1)!(N - k ) !  P(ava1anche of size k)  = 

for l < k < N ,  and 

N -  1 
P(no avalanche) = ~. . 

N +  1 

(7) 

(9) 

The probability distribution (8) has the unusual feature that (for k f O )  it is symmetric 
about k= ( N +  1)/2. 
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We are interested in the large N behaviour of this result. Taking k > O  fixed and 
N - t  - , (8) yields 

1 ic-'e-' 
P(avalanche of size k)  -- - N ( k - l ) !  

and if k is also large (1 << k<< N )  then this reduces to 

k-3R 
P(ava1anche of size k)  -- 6" 

Thus we reproduce the exponent -3/2 previously derived on trees [7] and via 
numerical and non-rigorous arguments [16,17] .  

Another quantity of interest is the single-site probability distribution for the 
heights, i.e. the probability that a given site contains H grains of sand in the stationary 
state. First look at configurations where exactly K sites have height H. (In the 
equivalence class notation these sites must be consecutive.) Remove these sites and 
consider the subsystem consisting of the remaining N -  K sites. The recurrent 
configurations of this subsystem are in one-to-one correspondence with those of a 
system of size N - K  where 'the recurrent configurations are determined by, in 
addition to the usual occupancy restrictions (3), the conditions j G h ( j ) G N - l  if 
j G  H -  K and j + K - 1 e h (  j )  G N -  1 if j >  H - K. 

The direct evaluation of the number of allowed configurations satisfying the above 
criteria is possiblc but somewhat complicated; appropriately summing over K would 
yield the desired probabilities. However, it turns out to be simpler instead to compare 
the number of allowed configurations with K sites having H grains with the number of 
allowed configurations with K sites having H -  1 grains, e.g. by subtracting the latter 
from the prior. Which configurations are left? 

In both cases j s h ( j )  G N -  1 forj<H- Kand j + K -  1 G h ( j ) G N -  1 if j>H-  K. 
The only difference occurs at site H - K which can be occupied by between H - 1 and 
N -  1 grains in the first case, and between H -  K and N -  1 grains in the second. If 
K= 1 these conditions are identical and no allowed configurations are left. For K a 2 ,  
however, site H - K  is now restricted so that h(H-K)GH-2. Since we need 
h( j+ I)>h(j)  (for the configuration to be a recurrent one), this implies that the fmt 
H - K  sites can have a maximum of H - 2  grains each and thus contribute a factor 
Z(H-  K,  H-2 )  to the partition function, excluding (global) symmetry factors. On 
the other hand restriction (3) imposes no additional conditions on the last N -  H sites, 
and it is easily seen that they contribute a factor Z(H- N ,  N -  H ) .  Defining P(H) = 
the probability that a given site will have H grains, putting in the appropriate 
symmetry factors and summing over the index K we obtain 

P ( H ) - P ( H - l ) = Z ( N , N ) - ' Z ( N - H , N - H )  

K , H - K , N - H  ) 'Z(H-K,H-2) N 

which is exactly (5 ) !  Since P(0) = 0 we can collapse the telescoping sum and obtain 
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H 

P(site has H grains) = 2 P(ava1anche of size k). (13) 
*=I 

Because of the symmetry of the avalanche distribution, we have here the symmetry 

2 .  
P(site hasHgrains)+P(site has N-Hgrains)=- N +  1 (14) 

The asymptotics of (i3j are relatively easy to compute using our previous results. 
for 0 s  H s  N. 

For N>> 1 we have 

1 H @-2e-k 

P(site has H grains) -- 
N E W  k = l  

which can be used directly to compute the behaviour for small H. For N>>H>>l we 
have 

P(site has H grains) -~ N+1 

We can also examine the total amount of sand in the system. The distribution of 
masses (total number of grains of sand) of recurrent configurations is most easily 
computed for mass M near the maximum value NZ. For example, the number of 
recurrent configurations with m,ass N2-2 is simply N(N+ 1)/2. This is easily general- 
ized to arbitrary mass (using inclusion-exclusion arguments) and we find that the 
number of recurrent configurations with total mass N2- K, & L ~ ( N ,  N), is 

i: ( N-1-1 (17) 
j= lN+l( l - l ) /Z  

where 

I(N, K) = [N- (N(N- 5) +2K+ 17/4)"- 3/21. (18) 

simply indicates 'how far' one must go in the inclusion-exclusion; [A1 is the least 
integeraA. Then the probability of a configuration having mass M is 
Z,(N, N)/(N+ l)N-l. Unfortunately we ake only able to find the asymptotic behav- 
iour of (17) for the tails of the distribution, i.e. M near N(N+ 1)/2 or M near N2, 
which is not where most of the (recurrent) configurations reside. Expressions similar 
to that which were used to find the avalanche distribution, e.g. (5 ) ,  are available: 

N 

Z,(N, hc) = 2 ZM-ik (N - j. h, - 1) 
i=1 
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and one could consider a generating function approach to eliminate the restrictions on 
j in the sum. Unfortunately the resulting expression will only converge in the regions 
equivalent to very large or very small mass, and thus provide no new information. 

The reformulation of the N-dimensional model in terms of a one-dimensional 
sandpile-like problem (with the required symmetry factor attached to each configur- 
ation) greatly facilitated the computations of ‘static’ quantities like the avalanche size, 
single-site height, and total mass distributions. In order to study the ‘dynamical’ 
quantities associated with the evolution of an avalanche, another reformulation in 
terms of a one-dimensional purfide model proves to be useful; we will use it to 
calculate the distribution of avalanche durations. This reformulation also provides a 
much more efficient method for numerical study than a straightforward implement- 
ation of the sandpile process. 

The duration of an avalanche is the number of sweeps that are required in order to 
reach a stable configuration once a grain of sand is dropped on the system. A sweep 
consists of two steps: we first go through all the sites and mark those with a number of 
grains exceeding the critical value and then topple all those sites simultaneously. The 
process is repeated until no site can topple. Note that this definition of duration is not 
the only one; others are possible because of the Abelian nature of the model. 

The particle model consists of N particles moving on a one-dimensional lattice with 
sites labelled from left to right by k E [I, N f  11 (where N is the number of site in the 
original model). The correspondence between sandpile configurations and particle 
configurations is as follows: given a sandpile configuration CO place a particle at 
position k for every site in CO containing k grains. If n, is the resulting number of 
particles at site k, the stability condition (3) translates to nkGk and n,> 1; since the 
critical height is N we also have nN+, =O. 

The boundary conditions are ‘almost’ periodic as will be explained below; we also 
introduce a marker (barrier) between sites N and N +  1 that will play an important 
role in the dynamics. 

The dynamics of the particle model is as follows: pick a particle at random and 
move it one site to the right (this is equivalent to dropping a grain of sand on CO). If 
the barrier was not crossed then we have a new stable configuration and can repeat the 
step. Thus, neglecting the boundary, our model is a zero-range process; however, the 
boundary plays a very important role. 

If the chosen particle jumps through the barrier it means that one site in CO is 
unstable and will topple. In the particle model such a toppling will mean that all 
particles simultaneously jump one site to the right except for the one at site N +  1 
which should move back to site 1. An equivalent formulation which we find more 
convenient is to move the barrier to the left by one unit and relabel the sites 
accordingly (i.e. the barrier defines the position of site Nand N+ 1 on the periodic 
lattice). 

As we moved the barrier, a number of particles (sayp2) might have gone through 
it. In the sandpile model this means that the initial toppling caused pz more sites to 
become unstable. To duplicate their toppling the barrier should now be moved p2 
more units to the left. The process continues until no particle crosses the barrier as it 
jumps. The total number of barrier jumps required is the duration of the avalanche. 
The probability that an avalanche has duration T is equivalent to the fraction of all 
particle configurations that will make the barrier jump T times if a particle at site N is 
picked. Of course T=O corresponds to the no avalanche case so that the probability 
that the avalanche duration is zero is ( N -  l ) l (N+ 1) (see (9)). 
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If there are T barrier jumps, let p l ,  p z  , . . . pT be the number of particles crossing 
the boundary at each jump and let P = p ,  +p2 +. . +pT; note that pi>O for i< T and 
p T =  0; we also have p1 > 1 for T> 1. Provided T>O we have 

P(duration T ) = Z ( N ,  N)-' 2 $ WN(l;p , ,p , ,  . . . , P T )  (20) 

where W N ( l ;  p l ,  p z ,  . . . , p T )  is the number of configurations that produce the 
specified barrier jumps. We can compute this in an iterative fashion, in terms of 
WM(s;pi ,  p i + l ,  . . . , p T ) ,  the number of (restricted) configurations on the subsystem 
consisting of sites 1 . . . M, s is size of the current jump, and pi, piil, . . . , pT are the 
remaining jump sues. We have 

p , , .  . . ,prrerrricred 

wN( l ;p l ,p2 , .  . . ,pT)= w(P17 1)WN-l(Pl-1;p2>p3>. . . . P T )  (21) 

~ N - l ( P I - I ; p Z , p 3 , . . .  * P T )  

and 

WM(Pi-l;Pi,Pi+l,. . . .PT) 

= (~w(Pi,pi-*)WM-p'-,(Pj;Pi+~,P~+2,. . . ,PT) (23) 

for 2<i< T -  1. The weight w( p ,  s) is easily computed since the criteria for allowed 
configurations are automatically satisfied within each block. Since each of the p 
particles can independently be at any of the s sites 

w ( p ,  s )  =sp. (24) 

Finally, the last step of the iteration is simply 

W N - P + ~ ~ - , ( P T - I ; P T )  

= Z(N - P, N -  P ) .  

As an example, for T = 4  this would lead to 

P(duration 4) 
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The general case can actually be written in a reasonably compact form. We can 
rearrange the terms and obtain the following (for D O ) :  
P(duration 5") 

- - 
S=T 

S! S! 
SI!. . . S T ! S ] ! .  . .ST. , s;' . . 

J,tQ+.. .+IT=S 

where we have the restrictions, = 1, si>O. We identify si with p i - ]  except that because 
of the need to initiate the avalanche, sI = 1 and S, =pl  - 1. Of course s, is nothing more 
than the size of the Ch jump. 
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